Question 13

Oxygen is present in 1 litre flask at a pressure of 7.6×10^{-10} mm of Hg. Calculate the number of oxygen molecules in the flask at 0° C. (1983 - 2 Marks)

NOTE THIS STEP: First we should calculate the number of moles of the gas under the given conditions by the relation PV = nRT

Here $P = 7.6 \times 10^{-10} \,\text{mm}$ Hg

$$=\frac{7.6\times10^{-10}}{760}$$
 atm. $=1\times10^{-12}$ atm.

V=1 litre, T=273+0=273K, R=0.082 litre atm./K/mol Putting the values in equation

$$n = \frac{PV}{RT} = \frac{1 \times 10^{-12} \times 1}{0.082 \times 273}$$
 moles

Now since 1 mole = 6.023×10^{23} molecules

$$\frac{10^{-12}}{0.082 \times 273} \text{ moles} = \frac{6.023 \times 10^{23} \times 10^{-12}}{0.082 \times 273} \text{ molecules}$$
$$= 2.7 \times 10^{10} \text{ molecules}$$